
Ayman Al Zaatari
11 December 2014

CMPS 211 - Assignment 10 Solution

1

Assignment 10 Solution

Ex1:

procedure mult (n: positive integer, x: integer)

if n=0 then return 0

else return x + mult (n-1, x)

{output is nx}

O(n)

Ex2:

procedure summation (n: positive integer)

if n=1 then return 1

else return n + summation (n-1)

{output is the sum of the first n positive integers}

Basis step: for n=1, summation = 1

Inductive step: hypothesis: suppose that till n=k summation (n) = 1+2+3+4… +k

RTP it is true for k+1

summation (k+1) = summation (k) + k+1 = 1+2+3+4… +k+ (k+1)

Ex3:

procedure max (a1, a2, a3, …, an: integers)

if n=1 then return a1

subSetmax := max (a1, a2, a3, …, an-1)

if an ≥ subSetmax then

return an

else

return subSetmax

{output is maximum of the set}

O(n)

Ayman Al Zaatari
11 December 2014

CMPS 211 - Assignment 10 Solution

2

Ex4:

procedure mode(a1, a2,an:integers, i: integer, n: integer, mode_location: integer)

if i = 0

return a[mode_location]

if countMode(a1, a2,an, i, n, 0) >= countMode(a1, a2,an, mode_location, n, 0)

return mode (a, i-1, n, i)

else

return mode(a, i-1, n, mode_location)

procedure countMode (a1, a2,an:integers, i: integer, n: integer, count: integer)

if n = 0

return count

if an-1 = ai

count := count + 1

return countMode(a1, a2,an, n-1, count)

Note:

 - i is used traverse the index of the array a (index starts at 0)

- n is the length of the array a

- mode_location is used to specify the location of the mode

- “count” is used to count the occurrences of the elements in the array a

 Example: mode ({1, 2, 10, 3, 3, 3, 1, 4, 5, 5}, 9, 10, 0) 3

Ex 5:

procedure multiply(x, y: nonnegative integers)

if y = 0 then

 return 0

else if y is even then

return 2*multiply (x, y/2)

else

return 2*multiply (x, (y−1)/2) + x

it is proved by strong induction

basis step: multiply (x, 0) = 0 = 0x and multiply (x, 1) = multiply (x, 0) +x = x = 1x

inductive step: suppose that for 0 ≤ y ≤ k xy=multiply (x, y)

-if k is odd, k+1 is even

multiply (x, k+1) = 2*multiply(x, (k+1)/2) = 2 x(k+1)/2 = x(k+1) [since 0 ≤ (k+1)/2 ≤ k]

-if k is even, k+1 is odd

multiply (x, k+1) = 2*multiply(x, (k)/2) = 2 xk/2 + x = xk+x = x(k+1) [since 0 ≤ k/2 ≤ k]

then in both cases multiply(x, k+1) gives x*(k+1), then its correct

Ayman Al Zaatari
11 December 2014

CMPS 211 - Assignment 10 Solution

3

Ex6:

procedure power (a: real number, n: positive integer)

if n=0

return a

else

pow:= power(a, n-1)

return pow * pow

 {output a
2^n

} O(n)

Ex7:

procedure a (n: non negative integer)

if n=0,

return 1

else if n=1

return 2

else if n=2

return 3

else

return a(n-1) + a(n-2) + a(n-3)

Ex 8:

the solution is given in the binary tree

in the upper part, we are just dividing the numbers into 2

equal lists where the difference between the number of values

in these 2 lists does not exceed 1

in the lower part we sort the values by merging 2 lists at a

time by removing smaller of first elemts of the 2 lists and

putting them in the right of the new list until we have an

empty list, we add all the values of the second list to the left

of the values in the new list

since the steps are similar in the lower part, I’m going to

show the last merge done

Ayman Al Zaatari
11 December 2014

CMPS 211 - Assignment 10 Solution

4

First List Second List Merged List Comparison

2 3 4 5 1 6 7 8 1 < 2

2 3 4 5 6 7 8 1 2 < 6

3 4 5 6 7 8 1 2 3 < 6

4 5 6 7 8 1 2 3 4 < 6

5 6 7 8 1 2 3 4 5 < 6

 6 7 8 1 2 3 4 5

 1 2 3 4 5 6 7 8

Ex9:

We use strong induction on n, showing that the algorithm works correctly if n = 1, and that if it works

correctly for n = 1 through n = k, then it also works correctly for n = k + 1. If n = 1, then the algorithm

does nothing, which is correct, since a list with one element is already sorted. If n = k + 1, then the list is

split into two lists, L1 and L2 . By the inductive hypothesis, mergesort correctly sorts L1. Now assume

that L2 was split into two sublists, the first containing the elements until k and the second contains the

(k+1)th element. We know the first sublist would also be correctly sorted using our algorithm given the

induction hypothesis, and we know the second sublist which contains only the (k+1)th element is also

sorted by definition. So it remains to only show that merge correctly merges two sorted lists into one.

This is clear, since with each comparison, the smallest element in L1 ∪ L2 not yet put into L is put there

