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Assignment 10 Solution  

Ex1: 

procedure mult (n: positive integer, x: integer) 

if n=0 then return 0 

else return x + mult (n-1, x) 

{output is nx} 

O(n) 

Ex2: 

procedure summation (n: positive integer) 

if n=1 then return 1 

else return n + summation (n-1) 

{output is the sum of the first n positive integers} 

 

Basis step: for n=1, summation = 1 

Inductive step: hypothesis: suppose that till n=k summation (n) = 1+2+3+4… +k 

RTP it is true for k+1 

summation (k+1) = summation (k) + k+1 = 1+2+3+4… +k+ (k+1) 

Ex3: 

procedure max (a1, a2, a3, …, an: integers) 

if n=1 then return a1 

 

subSetmax := max (a1, a2, a3, …, an-1)  

if an ≥ subSetmax then  

return an 

else  

return subSetmax  

{output is maximum of the set} 

O(n) 
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Ex4: 

procedure mode(a1, a2, ....an:integers, i: integer, n: integer, mode_location: integer) 

if i = 0 

return a[mode_location] 

if countMode(a1, a2, ....an, i, n, 0) >= countMode(a1, a2, ....an, mode_location, n, 0) 

return mode (a, i-1, n, i) 

else 

return mode(a, i-1, n, mode_location) 

procedure countMode (a1, a2, ....an:integers, i: integer, n: integer, count: integer) 

if n = 0 

return count 

if an-1 = ai 

count := count + 1 

return countMode(a1, a2, ....an, n-1, count) 

Note: 

 - i is used traverse the index of the array  a (index starts at 0)   

- n is the length of the array a 

- mode_location is used to specify the location of the mode 

- “count” is used to count the occurrences  of the  elements in the array a   

 Example: mode ({1, 2, 10, 3, 3, 3, 1, 4, 5, 5}, 9, 10, 0) 3 

Ex 5: 

procedure multiply(x, y: nonnegative integers) 

if y = 0 then 

 return 0 

else if y is even then  

return 2*multiply (x, y/2) 

else  

return 2*multiply (x, (y−1)/2) + x 

 

it is proved by strong induction 

basis step: multiply (x, 0) = 0 = 0x and multiply (x, 1) = multiply (x, 0) +x = x = 1x 

inductive step: suppose that for 0 ≤ y ≤ k xy=multiply (x, y) 

-if k is odd, k+1 is even  

multiply (x, k+1) = 2*multiply(x, (k+1)/2) = 2 x(k+1)/2 = x(k+1)  [since 0 ≤ (k+1)/2 ≤ k] 

 

-if k is even, k+1 is odd 

multiply (x, k+1) = 2*multiply(x, (k)/2) = 2 xk/2 + x = xk+x = x(k+1)  [since 0 ≤ k/2 ≤ k] 

then in both cases multiply(x, k+1) gives x*(k+1), then its correct 
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Ex6: 

procedure power (a: real number, n: positive integer) 

if n=0 

return a 

else  

pow:= power(a, n-1) 

return pow * pow 

 {output a
2^n

} O(n) 

 

 

 

Ex7: 

procedure a (n: non negative integer) 

if n=0,  

return 1 

else if n=1 

return 2 

else if n=2 

return 3 

else  

return a(n-1) + a(n-2) + a(n-3) 

Ex 8: 

the solution is given in the binary tree 

in the upper part, we are just dividing the numbers into 2 

equal lists where the difference between the number of values 

in these 2 lists does not exceed 1 

in the lower part we sort the values by merging 2 lists at a 

time by removing smaller of first elemts of the 2 lists and 

putting them in the right of the new list until we have an 

empty list, we add all the values of the second list to the left 

of the values in the new list 

since the steps are similar in the lower part, I’m going to 

show the last merge done 
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First List Second List Merged List Comparison 

2 3 4 5 1 6 7 8  1 < 2 

2 3 4 5  6 7 8 1 2 < 6 

3 4 5 6 7 8 1 2 3 < 6 

4 5 6 7 8 1 2 3  4 < 6 

5 6 7 8 1 2 3 4 5 < 6 

 6 7 8 1 2 3 4 5  

  1 2 3 4 5 6 7 8  

 

Ex9: 

We use strong induction on n, showing that the algorithm works correctly if n = 1, and that if it works 

correctly for n = 1 through n = k, then it also works correctly for n = k + 1. If n = 1, then the algorithm 

does nothing, which is correct, since a list with one element is already sorted. If n = k + 1, then the list is 

split into two lists, L1 and L2 . By the inductive hypothesis, mergesort correctly sorts L1. Now assume 

that L2 was split into two sublists, the first containing the elements until k and the second contains the 

(k+1)th element. We know the first sublist would also be correctly sorted using our algorithm given the 

induction hypothesis, and we know the second sublist which contains only the (k+1)th element is also 

sorted by definition. So it remains to only show that merge correctly merges two sorted lists into one. 

This is clear, since with each comparison, the smallest element in L1 ∪ L2 not yet put into L is put there 


